[hal-00773001, v1] Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture

نویسنده

  • JOACHIM KOCK
چکیده

We show that if (M,⊗, I) is a monoidal model category then REnd M (I) is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simplicial localization of monoidal structures, and a non-linear version of Deligne's conjecture

We show that if (M,⊗, I) is a monoidal model category then REnd M (I) is a (weak) 2-monoid in sSet. This applies in particular when M is the category of A-bimodules over a simplicial monoid A: the derived endomorphisms of A then form its Hochschild cohomology, which therefore becomes a simplicial 2-monoid.

متن کامل

[hal-00826280, v1] On the Equilibrium of Simplicial Masonry Structures

We present a novel approach for the analysis and design of selfsupporting simplicial masonry structures. A finite-dimensional formulation of their compressive stress field is derived, offering a new interpretation of thrust networks through numerical homogenization theory. We further leverage geometric properties of the resulting force diagram to identify a set of reduced coordinates characteri...

متن کامل

Coherence in monoidal track categories

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

The symmetric monoidal closed category of cpo $M$-sets

In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.

متن کامل

Divided Power Structures and Chain Complexes

We interpret divided power structures on the homotopy groups of simplicial commutative rings as having a counterpart in divided power structures on chain complexes coming from a non-standard symmetric monoidal structure.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013